Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms
نویسندگان
چکیده
Different studies have proposedmethods formining fuzzy association rules fromquantitative data, where themembership functions were assumed to be known in advance. However, it is not an easy task to know a priori the most appropriate fuzzy sets that cover the domains of quantitative attributes for mining fuzzy association rules. This paper thus presents a new fuzzy data-mining algorithm for extracting both fuzzy association rules and membership functions by means of a genetic learning of the membership functions and a basic method for mining fuzzy association rules. It is based on the 2-tuples linguistic representation model allowing us to adjust the context associated to the linguistic term membership functions. Experimental results show the effectiveness of the framework. © 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملGenetic algorithm based framework for mining fuzzy association rules
It is not an easy task to know a priori the most appropriate fuzzy sets that cover the domains of quantitative attributes for fuzzy association rules mining, simply because characteristics of quantitative data are in general unknown. Besides, it is unrealistic that the most appropriate fuzzy sets can always be provided by domain experts. Motivated by this, in this paperwe propose an automatedme...
متن کاملImprove Efficiency of Fuzzy Association Rule Using Hedge Algebra Approach
A major problem when conducting mining fuzzy association rules from the database (DB) is the large computation time and memory needed. In addition, the selection of fuzzy sets for each attribute of the database is very important because it will affect the quality of the mining rule. This paper proposes a method for mining fuzzy association rules using compressed database. We also use the approa...
متن کاملWeb usage mining with evolutionary extraction of temporal fuzzy association rules
In Web usage mining, fuzzy association rules that have a temporal property can provide useful knowledge about when associations occur. However, there is a problem with traditional temporal fuzzy association rule mining algorithms. Some rules occur at the intersection of fuzzy sets’ boundaries where there is less support (lower membership), so the rules are lost. A genetic algorithm (GA)-based s...
متن کاملAn effective parallel approach for genetic-fuzzy data mining
Data mining is most commonly used in attempts to induce association rules from transaction data. In the past, we used the fuzzy and GA concepts to discover both useful fuzzy association rules and suitable membership functions from quantitative values. The evaluation for fitness values was, however, quite time-consuming. Due to dramatic increases in available computing power and concomitant decr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 160 شماره
صفحات -
تاریخ انتشار 2009